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Abstract. To support rely-guarantee reasoning, we present an exten-
sion to Isabelle/HOL’s built-in library, which we use to verify a hierar-
chy of queue locks. The framework incorporates novel features of Isabelle,
and enables flexible syntax, assertion-annotations, and tactics for both
automated and structured proofs. Assertion-annotations enable elegant
top-down specification from an abstract queue lock to a non-trivial, prac-
tical circular-buffer queue lock.

1 Introduction

Concurrent systems are deeply integrated in the society, encompassing many
safety critical systems, such as automotive, aviation, and medical devices. Rea-
soning about these systems is challenging, especially when considering the inter-
ference between the individual threads that share resources and information.

Rely-guarantee (RG) reasoning, first developed in 1983 by Jones [12], pro-
vides a formal, compositional framework to reason about such interference. Each
thread guarantees a certain behaviour, but only when it can rely on its environ-
ment (i.e. all other threads) to maintain an acceptable level of interference. The
rely- and guarantee-conditions form a contract, allowing a large, complex sys-
tem to be decomposed into smaller components. One can then reason about each
component separately, through the component’s own rely-guarantee contract.

RG reasoning is based on Hoare triples, which feature a precondition, a com-
mand, and a postcondition. It augments the precondition with a rely condition,
and the postcondition with a guarantee condition, resulting in a quintuple. A for-
mulation of RG was mechanised in Isabelle/HOL by Prensa Nieto [17] in 2003.
Since then, Isabelle/HOL [15] has improved considerably, with advances such as
the automation tool Sledgehammer [3] being released in 2011, and the tactics
language Eisbach [14] in 2016. We modernise and enhance this library.

To allow for understandable and maintainable specifications, we develop flex-
ible syntax on top of the built-in RG library to support both the ‘quintuple style’
and the ‘VDM keyword style’ of RG specification. We also enable one to factor
out a shared data-invariant, which would otherwise need to be repeated across
the specification. Additionally we extend the syntax of commands to include
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embedded annotations (assertions). We develop novel tactics that support both
automated and structured proof styles, and take advantage of annotations to
discharge many trivial side conditions. All of these aim to make the specifica-
tions and proofs easier to develop and maintain. The syntax and tactics have
been applied to a variety of case studies, including the examples in the built-in
Isabelle library, as well as a hierarchy of queue locks; on the former, our syntax
and tactics greatly simplify their proofs and improves their readability.
Outline. Section 2 recalls the relevant background on Isabelle/HOL. Section 3
then covers the basics of RG reasoning, while presenting our syntax extensions.
Section 4 introduces the enhanced RG inference rules and our tactics. Section 5
specifies and verifies the Abstract Queue Lock. Sections 6 and 7 provide more
complex examples of a Ticket Lock and a Circular-Buffer Lock. Section 8 pro-
vides directions for future work and concludes.

1.1 Related Work

Mechanised Rely-Guarantee. We are not aware of any work that builds on Is-
abelle/HOL’s built-in RG library [17], except for our earlier work [5], which
motivated us to extend the library more systematically.

CSimpl [20] and CSim2 [21] are RG verification frameworks in Isabelle/HOL.
They derive from the sequential-programming framework Simpl [22], which sup-
ports exception-handling and aborting behaviour, among others. These extra
functionalities come at a cost of high complexity in the logic. In many verifica-
tion cases (such as the ones presented in this paper), the programs of interest
do not involve these extra functionalities, and are thus better suited to a more
lightweight framework. Compared to those works, our framework also supports
command annotations, which contribute to better usability. (Simpl has also been
extended to concurrency by Complx [1], which does not use RG reasoning.)

RG has been mechanised in Rocq (formerly Coq) by Zakowski et al. [24], who
based the logic on an intermediate representation language, and employed it to
verify a concurrent garbage collector. We chose to use Isabelle/HOL in order
to leverage its automated tools (e.g. Sledgehammer) and its structured proof
language. Another formulation of RG is the algebraic style of Hayes et al. [8,6],
where relies, guarantees, preconditions, postconditions, and commands are all
elements of an algebra. This style of RG, however, is not yet ready for practical
applications, as its foundations are still being updated recently [9].
Locks. The background and history of locks are widely discussed in the litera-
ture (e.g., [10,18]), and there have been works that use various logics and tools
to verify different locks. For example, the Bakery Algorithm was verified with
PVS [11], the MCS Lock was verified using the ‘certified concurrent abstraction
layers’ methodology [13], and the CLH Lock was verified with custom-built pro-
gram logics [23,19]. In comparison, we verify locks with the rely-guarantee logic
in Isabelle/HOL, and thus demonstrate another technique for concurrency veri-
fication. Moreover, we present the locks hierarchically from abstract to concrete,
showing how our methodology can be applied to other locks and even other
concurrent data structures.
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2 Isabelle/HOL

The definitions and theorems in this paper are implemented in the interactive
proof assistant Isabelle/HOL [15].4 In this section, we introduce the relevant
basics, using the Abstract Queue Lock as a running example.

In Isabelle/HOL, common basic types include nat and bool. Type-variables
are prefixed with apostrophes (’a). Functions from ’a to ’b have type ’a ⇒ ’b.
The symbol ◦> denotes forward function-composition: (f ◦> g) x = g (f x).

New types can be defined using the keywords type_synonym and datatype.
When specifying locks, we identify individual threads using the type thread_id,
which we define as: type_synonym thread_id = nat.

For parametric types, the type parameters are written before the type con-
structors. In particular, ’a list denotes the type of lists, where # denotes the
cons operation that adds an element to the front of a list, and @ denotes list-
concatenation. Other common parametric types include sets (’a set), relations
(type_synonym ’a rel = (’a × ’a) set), and the option-type (datatype ’a
option = None | Some ’a).

We further define the following two notions. The abbreviation at_head de-
scribes when ‘an element x is at the head of a list ys’. Note that both clauses must
be present in at_head to characterise the predicate faithfully, because the term
x = hd ys (x being the head of ys) does not imply x ∈ set ys in Isabelle/HOL.
The notion pred_to_rel lifts a predicate p (encoded as a set) to a relation, in
which p being true in the pre-state implies that p is true in the post-state.

abbreviation at_head x ys ≡ x ∈ set ys ∧ x = hd ys
definition pred_to_rel p ≡ {(s,s’). s ∈ p −→ s’ ∈ p}

2.1 Records

New types with multiple fields can be defined using the keyword record, which
is used in this paper to model the states of concurrent programs. For example,
the state of the Abstract Queue Lock is defined as:

record queue_lock = queue :: thread_id list

This definition introduces a new type queue_lock, with a single field queue, which
corresponds to a function of type queue_lock ⇒ thread_id list.

The built-in RG library further defines the following specialised set-builder
notations, which are often used on records.

(1) The acute symbol (́ ) abbreviates certain function applications in a set-
builder expression. For example, {| distinct ´ queue ∧ length ´ queue < 5 |} is
equivalent to {x. distinct (queue x) ∧ length (queue x) < 5}.

This notation is not just for the fields of a record type, but also for any
function on the record type. Moreover, there can be multiple different functions
prefixed by the acute symbol within one pair of double braces.

(2) For set-builder expressions describing relations, the symbols º and ª de-
note variables of the pre-state (the old -state) and the post-state (the after -state).
4 Our files can be found at http://hoefner-online.de/submissions/IsabelleLocks.zip.

http://hoefner-online.de/submissions/IsabelleLocks.zip
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For example, the following two expressions are equivalent:
{| length ºqueue < length ªqueue |}
{ (x1, x2). length (queue x1) < length (queue x2) }

This notation, ºx and ªx, corresponds to the standard RG-notation x and x′.

3 Rely-Guarantee Reasoning

Developed by Jones [12], the rely-guarantee (RG) reasoning paradigm augments
a Hoare triple with a rely and a guarantee, which are relations on states and
describe the allowed interaction between a thread and its environment (i.e. all
other threads that run in parallel). A thread requires every environment-step to
satisfy the rely, and if so, each step of the thread would uphold the guarantee.

A basic sentence in RG is a quintuple that consists of a precondition P (a
set of states), a rely-relation R (a relation on states), a program/command c (of
type ’a com), a guarantee-relation G (a relation on states), a postcondition Q (a
set of states). If c starts in a state satisfying P and each step of the environment
satisfies R, then c will finish in a state satisfying Q, with each transition satisfying
G. Collectively, P, R, G, and Q are called the specification components.

In the original library [17], an RG sentence is written as ⊢ c sat [P, R,
G, Q]. In our syntax extension, a basic RG sentence is written rely: R guar:
G code: {P} c {Q}, or more concisely {P,R} c {G,Q}. These are closer to the
common notation used in the RG literature.

The original library defines sequential commands using a simple while-language;
the type ’a com encompasses sequential commands that act on states of type ’a.
A parallel composition combines sequential commands in a list. Annotations will
be defined in Section 3.2.

3.1 Data-Invariant

Often, all four specification components contain a common data-invariant I that
can be factored out. Such an RG sentence with six components is written as (1)
or (2) below, both of which abbreviate (3).

(1) {P,R} c � I {G,Q}
(2) rely: R guar: G inv: I code: { P } c { Q }
(3) {P ∩ I, R ∩ pred_to_rel I} c {G ∩ pred_to_rel I, Q ∩ I}

Here, pred_to_rel lifts the predicate from set to relation, as defined just before
Section 2.1. This syntactic sugar makes specifications more concise by avoiding
replication of what is often a long expression, thus minimising translation errors.

3.2 Annotated Commands

When reasoning about programs, it is common and useful practice to interleave
assertions amid instructions, which illustrates more clearly how the individual
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instructions affect the state and how they interact (e.g. [1,16]). The commands
(’a com) in the original library do not allow for such annotations of assertions,
so we define the new type annotated commands (’a anncom), whose main cases
are listed and explained below.5

datatype ’a anncom = NoAnno ’a com | BasicAnno ’a ⇒ ’a
| SeqAnno ’a anncom ’a set ’a anncom
| CondAnno ’a bexp ’a anncom ’a anncom
| WhileAnno ’a bexp ’a set ’a anncom
| ...

The constructor NoAnno directly wraps a non-annotated command. Meanwhile,
BasicAnno f abbreviates NoAnno (Basic f), where (Basic f) is a non-annotated
command that encodes the state-transformation function f, which models SKIP,
single assignments, and multiple assignments. Multiple assignments (used in Sec-
tions 6 and 7) are performed in a single step, by combining them with function-
composition and wrapping the resultant function in a Basic instruction. Such a
‘multi-assignment’ is used to couple auxiliary instructions with concrete instruc-
tions, or to model RMW instructions such as fetch-and-increment.

In a sequential composition of two commands (SeqAnno c1 p c2), the inter-
mediate assertion p serves as the postcondition of c1 and the precondition of c2,
thus transforming the overall proof goal into two subgoals.

The if-then-else construct (CondAnno) consists of a Boolean expression as the
guard, and two annotated commands as the then-branch and the else-branch. As
for the while-loop (WhileAnno), the Boolean expression is the guard, the set repre-
sents an assertion for the state after the guard but before the loop’s body, which
is the annotated command. A typical RG sentence on annotated commands is
written: {P, R} c {G, Q}, and the notation for data-invariants is supported sim-
ilarly as in Section 3.1, except that the invariant is pushed through the syntactic
structure to be included in the annotations.

A parallel composition is defined as a list of annotated commands. The an-
notated commands in such a list often have the same form, as in the examples
of locks later in this paper. For this type of parallel composition, we express its
specification using the multi-parallel sentence below. Let P, R, G, and Q be the
precondition, rely, guarantee, and postcondition of the ‘global’ parallel compo-
sition. Furthermore, the parallel composition consists of n threads, where each
thread i has precondition P i, rely R i, annotated command c i, guarantee G i,
and postcondition Q i. The multi-parallel sentence is then written as follows:

annotated global_init: P global_rely: R
∥ i < n @

{P i, R i} c i {G i, Q i}
global_guar: G global_post: Q

The global specification components allow the parallel composition to be em-
bedded into a wider context, thus enabling compositional reasoning.

5 The type-variable ’a is to be instantiated with the state.
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3.3 Example (Specification of Abstract Queue Lock)

We now demonstrate the use of annotated commands and their RG sentences
(Section 3.2), by specifying parts of the Abstract Queue Lock. The full specifi-
cation of the Abstract Queue Lock will be completed later in Section 5.

A lock is a synchronisation mechanism to ensure that only one thread at a
time can enter its ‘critical section’ of code and access a shared resource. Before
a thread enters its critical section, it must first acquire the lock; if the lock is
already held by another thread, the acquiring thread waits until the lock becomes
available. Once the thread has finished executing its critical section, it releases
the lock, allowing other threads to acquire it.

The Abstract Queue Lock manages access to the critical section by a shared
queue to guarantee the first-in first-served property. The command acquire con-
sists of two steps: joining the queue, and checking whether it has reached the
head of the queue. As soon as the thread is at the head of the queue, it has suc-
cessfully acquired the lock. This corresponds to the following two commands.6

´ queue := ´ queue @ [t] ; WHILE (hd ´ queue ̸= t) DO SKIP OD

The loop of the second command, which contains the empty body, is referred to
as a spinloop. Thread t is said to spin on the value hd ´ queue ̸= t.

The acquire command should only be invoked by Thread t when it is not
already holding or queueing for the lock. This means that the precondition of
acquire, invoked by Thread t, is {| t /∈ set ´ queue |}. After the first instruction,
t becomes a part of the queue, but is not necessarily at the head; hence, the
intermediate assertion is {| t ∈ set ´ queue |}. After t finishes executing acquire,
it will be at the head of the queue (and, by definition, holding the lock); hence,
the postcondition is {| at_head t ´ queue |}.

Furthermore, each thread should only acquire the lock one at a time. That
means that each thread should only occur at most once in the queue, which is
formalised by the data-invariant {| distinct ´ queue |} – see Section 3.1. Suppose
for now that the rely and guarantee of acquire are R and G respectively. Then,
the RG sentence for acquire is written as follows, after combining the annotated
command with the pre- and postconditions.7

rely: R guar: G inv: {| distinct ´ queue |}
anno_code:
{| t /∈ set ´ queue |}

NoAnno (´ queue := ´ queue @ [t]) .;
{| t ∈ set ´ queue |}

NoAnno (WHILE hd ´ queue ̸= t DO SKIP OD)
{| at_head t ´ queue |}

Our proof assistance includes further syntactic sugar to simplify the presentation
of annotated commands, but we omit that in this paper for clarity.

6 The record-field queue acts on an underlying state, so the acute symbol is needed
to represent this hidden function application (see Section 2.1).

7 We have omitted some brackets to improve readability.
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4 Inference Rules and Tactics

We now turn to the inference rules on RG sentences involving our extended
syntax. Based on these inference rules, we then define our tactics, which support
both structured and semi-automatic approaches to theorem-proving.

4.1 Inference Rules

We summarise the subset of RG inference rules we apply in this paper. RG
reasoning requires that every pre- and postcondition in a proof is stable under
environment interference: a set (predicate) S is stable under a transition relation
R, if the post-state x’ satisfies S, whenever the pre-state satisfies S.

definition stable :: ’a set ⇒ ’a rel ⇒ bool where
stable S R ≡ ∀ x x’ . x ∈ S ∧ (x, x’) ∈ R −→ x’ ∈ S

Our first rule is on Basic instructions, which encompass single or multi-
ple assignments, SKIP, and state-transformations in general. To guarantee non-
interference from the environment, the pre- and postconditions need to be stable
under the rely. If the start state is in P, then f should result in a state in Q. The
guarantee should contain the identity-relation restricted to P; this accounts for
the possibility of the current thread not taking any step. Meanwhile, the state
transformation f needs to uphold the guarantee as well.

stable P R stable Q R P ⊆ {|´ f ∈ Q|}
∀ s. s ∈ P −→ (s, s) ∈ G ∀ s. s ∈ P −→ (s, f s) ∈ G

{P,R} Basic f {G,Q}
(basic)

The rule for spinloops is a specialised version of the original rule for WHILE. As
before, the pre- and postconditions must be stable under the rely. The guarantee
must contain the identity-relation restricted to P; however, as a spinloop changes
nothing, we can assume that the guarantee contains the full identity relation.
Finally, if a state satisfies the precondition but not the guard, then we exit the
spinloop, and the same state must satisfy the postcondition.

stable P R stable Q R Id ⊆ G P ∩ - b ⊆ Q

{P,R} WHILE b DO SKIP OD {G,Q}
(spinloop)

The two rules above involve non-annotated commands, as Basic commands
and spinloops do not need annotations in practice. The annotated version of all
the existing RG rules [4] can be implemented in our framework, including the
well-known rule for sequential composition, where M is the ‘middle’ assertion.

{P,R} ac1 {G,M} {M,R} ac2 {G,Q}

{P,R} ac1 ; {M} ac2 {G,Q}
(seq)

This rule demonstrates the usefulness of annotated commands. In contrast to
the original, non-annotated version, we can now explicitly characterise the mid-
state as part of the RG sentence. All other rules—such as the two-branch if-block,
one-branch if-block, and infinite loop—can be found in our source files.
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4.2 Tactics

In interactice proof assistants, a tactic (or method) is a procedure that transforms
proof goals in an attempt to solve them (semi-)automatically; either the goal is
solved entirely, or some (simpler) subgoals remain.

Tactics in Isabelle/HOL were historically written in the ML programming
language, which requires detailed understanding of ML and the internals of Is-
abelle/HOL. The Eisbach language [14] abstracts many of these advanced, ML-
level features into high-level constructs in Isabelle/HOL’s input language, thus
allowing for easier and more natural specification of tactics. Tactics in Eisbach
are defined using the same syntax as proofs. For example,

method conj_solver = (rule conjI; assumption)
defines a tactic conj_solver that attempts to resolve a conjunction automatically.
It uses the structured concatenation combinator (;), which applies the method
assumption to all subgoals that emerge from the application of the rule conjI.

We defined around ten different tactics in Eisbach. Here we only describe the
ones we regularly use in our case-studies.

Our main tactic, rg_anno_ultimate, is based on the inference rules on an-
notated commands. It tries to apply all possible inference rules, and when it
succeeds, it generates the appropriate proof skeleton. This tactic is vital during
the development process, as the structured proof skeleton lets us easily identify
any missing lemma or any error in the specification.

After applications of rg_anno_ultimate, we reach RG sentences on the indi-
visible Basic commands and spinloops. Here, we apply the tactics method_basic
or method_spinloop. These basic tactics can generate proof skeletons according
to the rules in Section 4.1; in simpler cases, they can be combined with built-in
automatic tactics (such as fastforce) using the structured concatenation com-
binator (;) to discharge the goal in one line.
Tactics with Higher Automation. The tactics above are mainly aimed for
the structured style of proofs. In the automated style, our tactic rg_proof_expand
eagerly simplifies an RG sentence and its subgoals, using Isabelle/HOL’s built-
in automated reasoners. This tactic first applies the built-in auto tactic, while
restricting its rule-set to a collection of RG-related lemmas—including the RG
inference rules and their alternative formulations. This phase decomposes all the
RG sentences into proof obligations, on which the tactic then invokes the built-in
simplifier simp.

The automated tactic rg_proof_expand is useful when the specification has
been finalised, and when the program of interest does not require many ad-
ditional lemmas—such as the ‘findP’ program, which is a standard example in
concurrency verification. The findP program involves n threads that concurrently
search in an array for an entry satisfying some predicate P . Specifically, each
thread i searches only the array-entries whose indices are congruent to i mod n.

This program was verified in the original RG library, with a proof that con-
sists of more than 25 apply-commands, including many manual choices of prim-
itive rules and manual instantiations of rules.
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Our proof below is systematic and many side conditions are automatically
discharged. The application of rg_proof_expand leaves us ten subgoals that purely
involve list-indexing and could not be discharged by simp alone. The first seven
subgoals are discharged by the standard method force. Isabelle/HOL automati-
cally finds the proofs of the final three subgoals, using the Sledgehammer tool [3].

apply rg_proof_expand
apply force+

apply (metis linorder_neqE_nat mod_aux)
apply (metis antisym_conv3 mod_aux)

by (metis leD mod_less_eq_dividend)

5 Abstract Queue Lock

We now pick up from Section 3.3, and complete the specification of the Abstract
Queue Lock. We discuss the correctness properties, the rely and guarantee, and
the main RG theorem. These discussions in this abstract setting will later guide
us in formalising the specifications of the Ticket Lock and Circular Buffer Lock.

As discussed earlier, the main data structure of this lock is a queue, modelled
as a list in Isabelle/HOL. Each thread that wishes to enter the critical section
joins at the end of the list and leaves from its head. In a queue, each element can
occur at most once. Hence, the data-invariant is expressed as the set of states
where the queue contains distinct elements: {| distinct ´ queue |}.

We view a thread as holding the lock if and only if that thread is at the
head of the queue. As a queue has at most one unique head, this modelling
choice directly upholds the mutual exclusion property—that ‘the lock is held by
at most one thread at a time’. (We omit the critical section, which we assume
not to modify any variable of the lock.)
Contract (Rely and Guarantee). There are other desirable properties of
locks that are described in terms of the interaction between a thread and its
environment. When Thread i holds the lock, the lock cannot be taken away
by the environment, and only i itself can release the lock; we call this the self-
releasing property. In the context of queue locks, this translates to the statement
head stays at the head.

The concurrent system of a lock is symmetric in that every thread has the
same behaviour. This symmetry enables the rely and the guarantee to be de-
scribed by a common relation, which we term the contract. Thread i relies on its
contract being met, and guarantees to respect the contracts of all other threads.
The latter can be expressed in terms of the for_others function below. It takes
an indexed relation r, where r i in our context represents the contract of Thread
i. Now, for_others r i is defined below as the intersection of all other threads’
contracts r j, where j ̸= i. This relation is what Thread i must guarantee.

abbreviation for_others :: (’i ⇒ ’s rel) ⇒ ’i ⇒ ’s rel where
for_others r i ≡

⋂
j∈-{ i }. r j
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Overall, the following is the contract of the Abstract Queue Lock. The first
clause states that a thread cannot be added to or removed from the queue by
its environment. The second clause states that the head stays at the head. Both
are classical rely-conditions.8

abbreviation queue_contract :: thread_id ⇒ queue_lock rel where
queue_contract i ≡ {| (i ∈ set ºqueue ←→ i ∈ set ªqueue)

∧ (at_head i ºqueue −→ at_head i ªqueue) |}

Theorems. On the top-level, each thread repeatedly uses the lock in the pattern
WHILE True DO (acquire ; release) OD. We omit the critical section between
acquire and release, as it does not access the lock. In the body of the infi-
nite loop, acquire consists of two steps, enqueuing and spinning, while release
consists only of the single dequeuing step. The local invariant, assertions, and
contract are as presented earlier.

The top-level RG sentence is hence the global parallel theorem below. The
queue is initially empty. Since there is no other actor outside of the collection of
threads, the rely is the identity relation (no external interference) and the guar-
antee is the universal relation (all variables are potentially modified). Finally,
because the outer loop never terminates (a continuously executing system), the
global postcondition is left as the trivial empty set.

theorem qlock_global: assumes 0 < n shows
annotated global_init: {| ´ queue = [] |} global_rely: Id
∥ i < n @ {| i /∈ set ´ queue |}, queue_contract i

WHILE True DO {stable_guard: {| i /∈ set ´ queue |} }
NoAnno (´ queue := ´ queue @ [i]) .;
{| i ∈ set ´ queue |}

NoAnno (WHILE hd ´ queue ̸= i DO SKIP OD) .;
{| at_head i ´ queue |}

NoAnno (´ queue := tl ´ queue) OD � {| distinct ´ queue |}
{ for_others queue_contract i, {} }
global_guar: UNIV global_post: {}

For this relatively simple program, our automated tactic rg_proof_expand
transforms this theorem into four subgoals. Among these, the first three sub-
goals are RG sentences corresponding to the three instructions inside the infinite
loop. Note that rg_proof_expand decomposes the global parallel sentence into the
infinite loop, and then decomposes the infinite loop into its three constituent in-
structions, while discharging most of the side-condition checks automatically.
Now, the first two RG sentences can be discharged by single lines, while the last
RG sentence can be resolved in a separate lemma using a structured proof (see
our source files for more detail). The final small subgoal can also be discharged
automatically. These result in the following five-line proof.

8 Recall the special small-o and small-a notation from the end of Section 2.1.
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apply rg_proof_expand
apply (method_rg_basic_named; fastforce)

apply (method_spinloop; fastforce)
using qlock_rel apply fastforce

using assms by fastforce

6 Ticket Lock

We now specify the Ticket Lock as an implementation of the Abstract Queue
Lock. The state of the Ticket Lock consists of three fields: (1) myticket ::
thread_id ⇒ nat, (2) now_serving :: nat, and (3) next_ticket :: nat.

Every thread locally stores a ticket number, and this collection of local vari-
ables is modelled globally by the myticket function. When Thread i joins the
queue, it sets myticket i to be the value next_ticket, and atomically increments
next_ticket; this corresponds to the atomic Fetch-And-Add instruction, which is
supported on most computer systems. Thread i then waits until the now_serving
value becomes equal to its own ticket number myticket i. When Thread i leaves
the queue, it increments now_serving.

This corresponds to the following code for acquire and release. Note that
we use forward function composition to model the Fetch-And-Add atomic block.

acquire ≡ ((myticket i := next_ticket) ◦>
(next_ticket := next_ticket + 1)) ;
WHILE now_serving ̸= myticket i DO SKIP OD)

release ≡ now_serving := now_serving + 1

Conceptually, Thread i is in the queue if and only if now_serving ≤ myticket i,
and is at the head if and only if now_serving = myticket i.

6.1 Invariant

We now formalise the invariant of the Ticket Lock. The first three clauses are
inequalities, while the last two clauses will be explained in more detail below.

abbreviation tktlock_inv ≡ {| ´ now_serving ≤ ´ next_ticket
∧ (1 ≤ ´ now_serving) ∧ (∀ i. ´ myticket i < ´ next_ticket)
∧ bij_betw ´ myticket ´ tktlock_contending_set

{´ now_serving ..< ´ next_ticket}
∧ inj_img ´ myticket positive_nats |}

The predicate bij_betw f A B holds if and only if f is bijective when its domain
is restricted to A and its codomain restricted to B. The penultimate clause of
the invariant stipulates that for every valid state s, the function myticket s is
bijective between the set of queuing/contending threads (those threads whose
tickets are not smaller than now_serving) and the set of tickets in use (those
numbers from now_serving up to, but not including next_ticket). In the final
clause of the invariant, inj_img f B holds if and only if f is injective when its
codomain is restricted to B. Hence, the final clause of the invariant ensures that
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the function myticket s is injective when 0 is excluded from its codomain. In
other words, all threads, whose tickets are non-zero, hold unique tickets.

6.2 Contract

The contract of the ticket lock, tktlock_contract below, describes the expected
behaviour of the environment. The first clause ensures that the local variable
myticket i does not change. Meanwhile, the global variables next_ticket and
now_serving must not decrease, which is described by the second and third clause
of tktlock_contract.

The last two clauses of tktlock_contract correspond to the two clauses of
the contract of the Abstract Queue Lock, where i ∈ set queue and at_head i
queue under the Abstract Queue Lock respectively translate to now_serving ≤
myticket i and now_serving = myticket i under the Ticket Lock.

abbreviation tktlock_contract i ≡ {| ºmyticket i = ªmyticket i
∧ ºnext_ticket ≤ ªnext_ticket ∧ ºnow_serving ≤ ªnow_serving
∧ (ºnow_serving ≤ ºmyticket i ←→ ªnow_serving ≤ ªmyticket i)
∧ (ºnow_serving = ºmyticket i −→ ªnow_serving = ªmyticket i) |}

6.3 RG Theorems

Similar to the Abstract Queue Lock, the specification of the Ticket Lock is stated
as a global parallel theorem. An application of our tactic method_anno_ultimate
generates six named subgoals. The latter five are side-condition checks, which
are easily discharged by fastforce, with appropriate lemmas supplied. The main
subgoal, presented as the following lemma, concerns the three key steps: en-
queue,9 spin, and dequeue.

rely: tktlock_contract i guar: for_others tktlock_contract i
inv: tktlock_inv anno_code:

{| ´ myticket i < ´ now_serving |}
BasicAnno ((´ myticket i ← ´ next_ticket) ◦>

(´ next_ticket ← ´ next_ticket + 1)) .;
{| ´ now_serving ≤ ´ myticket i |}

NoAnno (WHILE ´ now_serving ̸= ´ myticket i DO SKIP OD) .;
{| ´ now_serving = ´ myticket i |} }

NoAnno (´ now_serving := ´ now_serving + 1)
{| ´ myticket i < ´ now_serving |}

This RG sentence on an annotated command reduces to three subgoals with
an application of method_anno_ultimate. These three subgoals correspond to the
three instructions in the lemma; each is a RG sentence on a non-annotated
command, with pre- and postconditions taken from the appropriate annotations.

On each of these subgoals, our tactics method_basic and method_spinloop gen-
erate named cases, which we easily discharge after identifying and establishing
the needed lemmas (possibly with the aid of Sledgehammer).
9 Note that in the enqueue step, a left-arrow denotes a function that updates the field

of a record, and ◦> denotes forward function composition (see Section 2).
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7 Circular Buffer Lock

Under the Ticket Lock, every queuing thread spins on the same ‘now-serving’
variable. On cache-coherent machines, this creates extra cache-updating traffic
and hinders the hardware performance. This problem can be mitigated using a
queue lock where every queuing thread spins on a different memory-location. In
this section, we specify a Circular Buffer Lock, which is a more involved imple-
mentation of the Abstract Queue Lock, inspired by other array-based locks [2,7].

First, we define the types thread_id and index to be synonyms of the nat-
ural numbers. We also define a new type: datatype flag_status = Pending |
Granted. The Circular Buffer Lock assumes a fixed number of threads, which we
define as a constant NumThreads. This constant is assumed positive, which we
enforce using a locale in Isabelle/HOL. Based on this constant, we allocate an
array of size ArraySize, which is NumThreads + 1.

The state of our Circular Buffer Lock is modelled by the record cblock_state,
which consists of the following fields:

– myindex :: thread_id ⇒ index – a function that maps each thread to an
array-index (where the array is flag_mapping below).

– flag_mapping :: index ⇒ flag_status – an array of size ArraySize that
stores values of type flag_status.

– tail :: index – an index representing the tail of the queue, which is used
when a thread joins the queue.

– aux_head :: index – an auxiliary variable that stores the index used by the
thread at the head of the queue; the head of the queue spins on the flag
flag_mapping aux_head.

– aux_queue :: thread_id list – the auxiliary queue of threads.
– aux_mid_release :: thread_id option – an auxiliary variable that signals if

a thread has executed the first instruction of release, but not the second.

We initialise the array of flags with Granted in the zeroth entry and Pending
in all other entries. The indices tail and aux_head are initialised to 0. The queue
is initially empty, and no thread is in the middle of release. (The definition of
the initial state can be found in our source files.)

Fig. 1. Example

A typical state is illustrated by Fig. 1.
There are two threads, with Thread 1 preced-
ing Thread 0 in the auxiliary queue. The in-
dex held by Thread 1 is myindex 1 = 0. As the
zeroth entry of the array of flags is Granted,
Thread 1 holds the lock. The index held by
Thread 0 is myindex 0 = 1. Thread 0 thus
spins on the flag with index 1, and waits for
it to become Granted.

Similar to the previous queue locks, the acquire command of our Circular
Buffer Lock consists of two conceptual steps. (1) To join the queue, Thread i
stores the global index tail locally as myindex i, and atomically increments tail
modulo the array size. (2) Thread i then spins on its flag, which is the entry in
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the array at index myindex i. When this flag changes from Pending to Granted,
the thread has reached the head of the queue.

acquire ≡ Basic ((myindex[i] ← tail) ◦>
(tail ← (tail + 1) mod ArraySize)) ;

WHILE flag_mapping (myindex i) = Pending DO SKIP OD

When Thread i releases the lock, it sets its flag to Pending. Then it sets the
flag of the next thread to Granted, which corresponds to ‘next’ entry in the array,
modulo the array size.

release ≡ flag_mapping[myindex i] := Pending ;
flag_mapping[((myindex i + 1) mod ArraySize)] := Granted

Auxiliary Variables. The release command consists of the single conceptual
step of exiting the queue, but is implemented here as two separate instructions.
Hence, the auxiliary variable aux_mid_release indicates when a thread is between
the two lines of release, and allows us to express the assertion there.

The other two auxiliary variables, aux_head (the head-index ) and aux_queue,
store information that can in principle be inferred from the concrete variables
(i.e. the non-auxiliary variables). However, explicitly recording this information
as auxiliary variables greatly simplifies the verification process.

In the program, these auxiliary variables need to be updated atomically with
the relevant instructions. Below is the code of release with the auxiliary variables
included. (Auxiliary variables are added to acquire in a similar way.)

release’ ≡
Basic ((flag_mapping[myindex i] ← Pending) ◦>

(aux_mid_release ← Some i)) ;
Basic ((flag_mapping[((myindex i + 1) mod ArraySize)] ← Granted) ◦>

(aux_queue ← tl aux_queue) ◦>
(aux_head ← (aux_head + 1) mod ArraySize) ◦>
(aux_mid_release ← None))

7.1 Invariant

The invariant of the Circular Buffer Lock is stated as separate parts below,
all of which are of type cblock_state set. The first definition invar_flag re-
lates flag_mapping with the head-index aux_head, and consists of two clauses.
(1) At every index that is not the head-index, the flag must be Pending. (2)
As for the head-index itself, there are two possibilities. When the thread at
the head of the queue invoked release but has only executed its first instruc-
tion, aux_mid_release becomes set to Some i; in this case, the flag at the head-
index is set to Pending, but the thread remains in the queue. In all other cases,
aux_mid_release = None, and the flag at the head-index is always Granted.

definition invar_flag ≡ {| (∀ i ̸= ´ aux_head. ´ flag_mapping i = Pending)
∧ (´ flag_mapping ´ aux_head = Pending ←→ ´ aux_mid_release ̸= None) |}

The next clause invar_queue describes the relationship between the auxiliary
queue and the other variables, including the set of ‘used indices’, whose definition
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can be found in our source files. The clause involving map relates the queuing
threads to the implies a number of further properties, such as the distinctness
of aux_queue (which mirrors the invariant of the Abstract Queue Lock), and the
injectivity of myindex (i.e. each queuing thread has a unique index).

definition invar_queue ≡ {| (∀ i. i ∈ set ´ aux_queue −→ i < NumThreads)
∧ map ´ myindex ´ aux_queue = ´ used_indices |}

The overall invariant is the conjunction of the invariant-clauses above, with
three additional simple inequalities concerning tail, aux_head, and NumThreads,
which are omitted here and can be found in our source files.

7.2 Contract

The contract of the Circular Buffer Lock is devised along the observations: (1)
local variables do not change; (2) global variables may change; and (3) auxiliary
variables change similarly as in the Abstract Queue Lock.

The first two areas are covered by contract_raw, quoted below. The only local
variable myindex i does not change. The global variable tail may change, but
is not included in the contract, as changes to tail are not restricted. However,
the other global variable flag_mapping is allowed to change only in specific ways.
As flag_mapping stores information about the head of the conceptual queue, its
allowed changes naturally relate to the head stays the head property. Under the
Circular Buffer Lock, Thread i is at the head of the queue when flag_mapping
(myindex i) = Granted. Meanwhile, note that myindex i can become outdated if
Thread i is not in the queue. Hence, we need the premise i ∈ set ºaux_queue
before the head stays the head statement in the final clause of contract_raw.

definition contract_raw :: thread_id ⇒ cblock_state rel where
contract_raw i ≡ {| ºmyindex i = ªmyindex i
∧ (i ∈ set ºaux_queue −→ ºflag_mapping (ºmyindex i) = Granted
−→ ªflag_mapping (ªmyindex i) = Granted) |}

For the auxiliary variable aux_queue we require the same two clauses as in
the contract of the Abstract Queue Lock. As for aux_mid_release, only the head
of the queue can invoke release and hence modify aux_mid_release. Therefore,
the second clause of contract_raw has the extra equality in the consequent.

definition contract_aux :: thread_id ⇒ cblock_state rel where
contract_aux i ≡ {| (i ∈ set ºaux_queue ←→ i ∈ set ªaux_queue)
∧ (at_head i ºaux_queue −→

at_head i ªaux_queue ∧ ºaux_mid_release = ªaux_mid_release) |}

7.3 RG Theorems

Similar to Section 6.3, the overall theorem is a global parallel RG sentence,
where each thread runs an infinite loop of acquire followed by release. Our
tactic reduces it to a number of side-condition checks and the following subgoal.
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rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:

{| i /∈ set ´ aux_queue |}
BasicAnno (acq_line1 i) .;
{| i ∈ set ´ aux_queue |}

NoAnno (WHILE ´ flag_mapping (´ myindex i) = Pending DO SKIP OD) .;
{| at_head i ´ aux_queue ∧ ´ aux_mid_release = None |}

BasicAnno (rel_line1 i) .;
{| at_head i ´ aux_queue ∧ ´ aux_mid_release = Some i |}

BasicAnno (rel_line2 i)
{| i /∈ set ´ aux_queue |}

This lemma is reduced to four RG sentences by method_anno_ultimate, with
each subgoal corresponding to each of the four instructions. For each of these
subgoals, we then apply the suitable tactic to generate a proof skeleton, from
which we identify any required lemma, patch any missing piece in the specifica-
tion, and finally prove the overall theorem.

8 Conclusion

We have presented an extension of the rely-guarantee library in Isabelle/HOL.
By verifying both high-level specifications (Section 5) and realistic code (Sec-
tions 6 and 7) we have illustrated its usability. This extension includes support
for RG to be written in familiar syntactic forms, and specifies a global parallel
composition operator with global specification components. Commands of the
language can be annotated with assertions, which we use to build up a struc-
tured representation of commands with pre- and postconditions and intermedi-
ate states. Additionally, a common invariant can be separately reasoned about
using this framework, instead of repeating this in the four specification compo-
nents. Novel proof tactics improve readability of proofs, and better assist with
specification development and automated theorem-proving.

We have applied the extended RG library to verify a collection of lock algo-
rithms, including an Abstract Queue Lock, a Ticket Lock and a Circular Buffer
Lock. In each case, we have been able to reason directly with individual lines of
code, using the assertion-annotations and the improved basic syntax structure.
We have shown that all three algorithms maintained their correctness properties
when operated under the scenarios outlined by their specification components.

Previously, we have verified an implementation of a CLH lock [5] using some
rudimentary proof assistance presented in this paper. For future work, we plan to
apply our extended RG library systematically to more case-studies, such as the
MCS lock and the networking buffer used in the OpenBSD operating system. We
also plan to further improve the library, such as adding support for weak-memory
analysis or liveness-property specification.
Acknowledgments. This work was funded by the Department of Defence, and adminis-
tered through the Advanced Strategic Capabilities Accelerator.
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